Cyclicality in Losses on Bank Loans

Bart Diris Bart Keijsers Erik Kole

Erasmus University Rotterdam

The opinions expressed in this article are the authors’ own and do not reflect the view of NIBC Bank or the PECDC.

8th Financial Risks International Forum
March 31, 2015
Bank loans

- Banks face credit risk:
 - Risk that borrower of bank loan defaults

- Default:
 - Inability of borrower to meet payments
 - For example: (i) being overdue on payment or (ii) bankruptcy

- Portfolio loss depends on three components:
 - Default rate (DR)
 - Loss given default (LGD) (0 is no loss, 1 is full loss)
 - Exposure at default (EAD) (taken as given)
Research question

- Does LGD of bank loans show cyclical variation?
 - Related to default rate variation?
 - Related to the business cycle?

- Relevance:
 - Practitioners: Basel II says that LGD should “reflect economic downturn conditions where necessary to capture the relevant risks.”
 - Academics: A lot of research on cyclicality in bonds, but hardly any on loans
 - Complement literature that finds cyclicality for bonds (Altmann et al, 2005 etc.)
 - Note that bank loans are very different from bonds
 - Banks monitor more closely
 - Loans are more senior
 - Recovery is more flexible
What do we do?

- We study a unique data set from the PECDC database.
 - Previous research on bank loan LGD: Calabrese & Zenga (2010, JBF), 150,000 Italian loan recoveries 1999.
 Hartmann-Wendels et al. (2014, JBF), 14,000 German leasing defaults in 00s.

- We develop a new model that links LGD and DR to a common latent factor.
 - Mixed measurement model
 - Mixture of normals for LGD; usually beta distribution for bond LGD (Creal et al., 2014; REStat etc).

- Link latent factor to macro variables.
Default data

- Pan European Credit Data Consortium (PECDC) database
 - Consortium of 44 banks (not all of them European)
 - Pooled data-set with LGD and DR
 - Includes loan-specific information (industry, asset class etc.)

- NIBC subset
 - Restrict to 2003–2010 (median workout period of 1 year).
 - Small loans (EAD < € 100,000) and outlier LGDs (LGD < −0.5 and LGD > 1.5) excluded.
 - 22,080 defaults remain.
LGD: Empirical distribution

- Bimodal
- Not restricted to [0, 1]-interval.
 > 1 principal advances, costs of default.
 < 0 sale of collateral, principal advances, penalty fees.
LGD: Time-variation of the mean

Average LGD per quarter

- Average LGD varies
- Either caused by (i) variation in means of components or (ii) variation in probability of components?
LGD: Time-variation of empirical distribution

Empirical distribution per quarter

- Modes stay at 0 and 1.
- Probability of components (relative size of peak) varies.
Mixed measurement model (1)

- y_{it}^l: LGD on loan $i = 1, \ldots, N_t$ that goes into default at time t and is part of group j (i.e. particular industry etc.)

\[
y_{it}^l \sim \begin{cases}
 N(\mu_j, \sigma^2_j) & \text{if } s_{it} = 0 \text{ (good loss)} \\
 N(\mu_j, \sigma^2_j) & \text{if } s_{it} = 1 \text{ (bad loss)}
\end{cases} \tag{1}
\]

where $\mu_j < \mu_j^1$.

- Probability of loss type linked to latent factor.

\[
P(s_{it} = 1) = p_{jt} = \Lambda \left(\beta_{j0}^l + \beta_{j1}^l \alpha_t \right) \tag{2}
\]

where $\Lambda(x) = 1/(1 + e^{-x})$, logistic function.
Mixed measurement model (2)

- y_{jt}^d: number of defaults at time t for group j,
 - L_{jt}: number of loans and q_{jt}: default rate.
 - $y_{jt}^d \sim \text{Binom}(L_{jt}, q_{jt})$ (3)

- Link default rate to latent factor.
 - $q_{jt} = \Lambda (\beta_{j0}^d + \beta_{j1}^d \alpha_t)$ (4)

- y_t^m vector of macro variables at time t
 - $y_t^m = \beta_0^m + \beta_1^m \alpha_t + \nu_t$ (5)
 - where $\nu_t \sim \text{N}(0, \Sigma)$.
 - Latent factor α follows AR(1) process.
Results of basic model

No macro variables, no difference between industry, asset class, etc.

<table>
<thead>
<tr>
<th></th>
<th>LGD module</th>
<th>Default rate module</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_0</td>
<td>0.072 (0.001)</td>
<td></td>
</tr>
<tr>
<td>μ_1</td>
<td>0.828 (0.002)</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>0.131 (0.001)</td>
<td></td>
</tr>
<tr>
<td>β^l_0</td>
<td>-1.652 (0.100)</td>
<td></td>
</tr>
<tr>
<td>β^l_1</td>
<td>0.311 (0.045)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>β^d_0 -4.545 (0.310)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β^d_1 0.931 (0.248)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Latent Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>0.449 (0.167)</td>
</tr>
</tbody>
</table>

- Clear distinction between good and bad losses.
- LGD and DR positively correlated because of latent factor.
Goodness of fit

- Clear distinction between good and bad losses.
- Alternative: Student’s t distribution, better fit but problems with interpretation.
Latent factor and implications

Left: Smoothed latent factor α_t;

Right: Implied values for p_t, probability of a bad loss and q_t, probability of default.

▶ Cyclical pattern, p_t: 9–28%, q_t: 0.2–7%.

▶ Average marginal effects:

$\alpha_t + 1 \text{ std} \rightarrow p_t + 4.2\%, \ q_t + 1.5\%.$
Relation credit cycle and business cycle (1)

Model with macro variables; no difference between industry etc

<table>
<thead>
<tr>
<th></th>
<th>LGD module</th>
<th>Default rate module</th>
<th>Macro module</th>
<th>Latent Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_0)</td>
<td>0.072 (0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_1)</td>
<td>0.828 (0.002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.131 (0.001)</td>
<td>(\beta_0^d) = -4.526 (0.284)</td>
<td>(\beta_1) = 0.809 (0.181)</td>
<td></td>
</tr>
<tr>
<td>(\beta_0^l)</td>
<td>-1.656 (0.102)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_1^l)</td>
<td>0.299 (0.044)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>-0.499 (0.070)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>-0.408 (0.059)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UR</td>
<td>0.415 (0.060)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.484 (0.162)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No changes to model without macro variables for estimates.
- Significant relation of expected sign with macro variables.
Relation credit cycle and business cycle (2)

(a) GDP growth

(b) Unemployment rate

Lag = 5: macro variable at $t + 5$ and factor at t

- Lead/lag relation unclear ex ante:
 - Recession \rightarrow losses? Or other way around?
 - Contemporaneous negative relation with GDP
 - Factor leads unemployment rate.
Portfolio losses (1)

▶ Are our findings economically relevant?
 ▶ Do the losses for banks on a given loan portfolios change a lot over time?
 ▶ If yes, banks cannot ignore the cyclicality

▶ What do we do?
 ▶ Consider portfolio of 2,000 loans with EAD of EURO 1
 ▶ Obtain loss distribution by drawing 50,000 scenarios for a particular date (=latent factor)

▶ Economic capital: amount of capital bank should hold to remain solvent
 ▶ Difference between loss at 99.9% and expected loss
 ▶ Hence, accounts for unexpected losses
Portfolio losses (2)

(a) Losses over time

(b) Economic capital over time

- Enormous amount of variation in:
 - Average losses
 - Percentiles in tails
 - Economic capital
Concluding remarks

- Unique dataset leads to unique challenges
 - LGD, DR for bank loans
 - Mixture model for LGD due to observations outside [0,1]

- Results:
 - Mixture model for LGD offers good fit.
 - Latent factor (credit cycle) related to macroeconomic variables.
 - Variation in LGD from variation in probability of bad loss.
 - Credit cycles are not identical for different groups

- Portfolio losses:
 - The distribution of portfolio losses and the economic capital changes substantially over time